Dr. Lidia Contreras Bernal

Dr. Lidia Contreras Bernal obtained her Chemistry degree from the University of Seville in 2012.  In 2014 she completed the Master in Advanced Studies in Chemistry (2014) from the University of Seville. After that she continued her scientific formation working as Research Assistant at the Institute of Natural Resources and Agrobiology of Seville (2015) and in 2016 she was granted with a Pre-Doctoral fellowship to carry out her PhD research at the University Pablo de Olavide in Seville.  In 2019 she defended her Thesis in Chemistry-Physics entitled “Metal-halide perovskite for photoconversion: fabrication at ambient conditions and photoelectrochemical characterization”. Her research was focused on the synthesis and characterization of nanomaterials for solar devices as well as on the characterization of these solar cells using optical and optoelectronic techniques such as impedance spectroscopy.


Relevant Publications

1. Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Ambient Conditions Contreras-Bernal, L.; Riquelme, A.; Gallardo, J.J.; Navas, J.; Idígoras, J.; Anta, J., ACS Sustainable Chemistry & Engineering (2020), 8, 18, 7132–7138.

2. Enhanced stability of perovskite solar cells incorporating dopant-free crystalline spiro-ometad layers by vacuum sublimation, Barranco, A.; Lopez-Santos, M. C., Idigoras, J.; Aparicio, F. J.; Obrero-Perez, J.; Lopez-Flores, V.; Contreras-Bernal, L.; Rico, V.; Ferrer, J.; Espinos, J. P.; Borras, A.; Anta; Sanchez-Valencia, J. R., Advanced Energy Materials (2019), 1901524. Selected as Cover of the Journal.

3. Impedance analysis of perovskite solar cells: a case study, Contreras-Bernal, L.; Ramos-Terrón, S. Riquelme, A.; Boix, P. P.; Idígoras, J.; Mora-Seró I.; Anta, J. A., J. Mater. Chem. A (2019), 7, 12191–12200.

4. Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers, Idígoras, J.; Aparicio, F. J.; Contreras-Bernal, L.; Ramos-Terrón, S.; Alcaire, M.; Sánchez-Valencia, J. R.; Borras, A.; Barranco, A.; Anta, J. A., ACS Applied Materials & Interfaces (2018), 10, 11587–11594.

5. Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device, Contreras-Bernal, L.; Aranda, C.; Valles-Pelarda, M.; Ngo, T. T.; Ramos-Terrón, S.; Gallardo, J. J.; Navas, J.; Guerrero, A.; Mora-Seró, I.; Idígoras, J.; Anta, J. A., The Journal of Physical Chemistry C (2018), 122, 5341–5348.

6. The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO2 Contact, Idígoras, J.; Contreras-Bernal, L.; Cave, J.M.; Courtier, N.E.; Barranco, A.; Borras, A.; Sánchez-Valencia, J. R.; Anta, J. A.; Walker, A. B., Advanced Materials Interfaces, (2018), 0, 1801076.

7. Impact of moisture on efficiency-determining electronic processes in perovskite solar cells, Salado, M.; Contreras-Bernal, L.; Caliò, L.; Todinova, A.; López-Santos, C.; Ahmad, S.; Borras, A.; Idígoras, J.; Anta, J. A., Journal of Materials Chemistry A (2017), 5, 10917–10927.

8. Origin and Whereabouts of Recombination in Perovskite Solar Cells, Contreras-Bernal, L.; Salado, M.; Todinova, A.; Calio, L.; Ahmad, S.; Idígoras J.; Anta, J. A., The Journal of Physical Chemistry C (2017), 121, 9705–9713.

9. Towards a Universal Approach for the Analysis of Impedance Spectra of Perovskite Solar Cells: Equivalent Circuits and Empirical Analysis, Todinova, A.; Contreras-Bernal, L.; Salado, M.; Ahmad, S.; Morillo, N.; Idígoras, J.; Anta, J. A., ChemElectroChem (2017), 4, 2891–2901.

10. Specific cation interactions as the cause of slow dynamics and hysteresis in dye andperovskite solar cells: a small-perturbation study, Contreras, L.; Idígoras, J.; Todinova, A.; Salado, M.; Kazim, S.; Ahmad, S.; Anta, J. A., Physical Chemistry Chemical Physics (2016), 18, 31033–31042.